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BOUT Simulations of Resistive Ballooning Turbulence
in Edge Region for DIII-D Shot #119919

• Simulations of electrostatic resistive ballooning in
DIII-D shot #119919/119921, with full geometry
and magnetic shear, crossing the separatrix

• Nonlinear BOUT equations for ion density,
vorticity, electron and ion velocities,  Ohm’s law,
and Maxwell’s equations.

• In earlier work, we have suppressed a spatial
odd-even mode ballooning along the field line by
either filtering with ∇||

2 or -∇||
4 diffusive operator

added to right side of vorticity and ion density
eqns, or with use of a staggered mesh for ∇||
representation. Parallel damping included here;
no odd-even mode seen.

• Simulation results with/without Te fluctuations

• BOUT obtains steady-state turbulence with
fluctuation amplitudes and transport that
compare reasonably to the DIII-D data.

BOUT
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BOUT Simulation of Resistive Ballooning
Turbulence for DIII-D Shot #119919 - Outline

• BOUT algorithmic issues -- control of an odd-even numerical
contamination

• Electromagnetic simulations of resistive ballooning turbulence in
single-null DIII-D geometry:

– Case #1: No Te fluctuations

– Case #2: With Te fluctuations

– Case #3: With Te fluctuations and electron parallel thermal
conduction

– Case #4: With Te fluctuations, electron parallel thermal
conduction, and       in the vorticity eqn.

• Comparison to probe data for DIII-D shot #119919. Shot #119919 is a
well-characterized L-mode shot exhibiting steady-state turbulence.! 
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BOUT06 produces expected ballooning-like turbulence
in full DIII-D X-point geometry

• BOUT solves Braginskii-like fluid equations for fluid turbulence in various
geometries Distribution of <δNi>

in saturated turbulence

BOUT
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• Electromagnetic with
• Finite-difference equations
• Implicit time integration with PVODE
• Quasi-ballooning with zero-gradient radial bdry conditions! 
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Resistive Ballooning  Simulations with BOUT --  Odd-even Numerical Mode
Can Be Controlled with Normalized Diffusive Damping in Poloidal Angle

C=0
ng,pol=32  4th order
Odd-even mode evident

C=1
ng,pol=32  4th order
Damping of odd-even mode

• Control the odd-even mode with           in the vorticity and ion
  density eqns with diffusion operator in poloidal angle and normalized coeff.:

•  Damping of the odd-even mode is proportional to normalized coefficient C
! 
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• Note: Staggered grid for ∇|| representation resolves problem
  with ∇||

2 finite-difference stencil & also removes odd-even mode
A(Nyquist)/A(global)~(Δx||
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Case #1: BOUT06 produces expected drift-resistive
ballooning turbulence in full DIII-D X-point geometry

• Consider the following simplified equation set in the BOUT06 framework:

Distribution of <δNi>
in saturated turbulence
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BOUT

• Electromagnetic with
• Actual DIII-D geometry
• DIII-D - like fixed background profiles
      for shot 119919
• No Te fluctuations

! 
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BOUT-06 produces saturated turbulence
for DIII-D geometry with no Te fluctuations

• Evolution of density fluctuations leading to saturated amplitudes and spectra

k||Δx||
k||Δx||k||Δx||

BOUT

•  No Te fluctuations
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Time-averaged ion density fluctuations in the midplane
saturate at ~10% and peak near Rsep

BOUT

•  No Te fluctuations
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Time-averaged ion particle diffusion coefficient
saturates at O(0.4) m2/s in the midplane and peaks near Rsep

BOUT

• In this model with no temperature fluctuations and if    , then  

! 

"ln(Teq ) = "ln(neq )

! 

"conv # (3/2)D

•  No Te fluctuations
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Case #2: Include Advection of Temperature Te in
BOUT06 Equations for Drift Resistive Ballooning

• Consider the following simplified equation set in the BOUT06 framework:

• Electromagnetic with
• Actual DIII-D geometry
• DIII-D - like fixed background profiles
      for shot 119919
• Includes Te fluctuations
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BOUT-06 produces saturated turbulence
for DIII-D geometry with Te fluctuations

BOUT

• Saturation at ~1.5x10-4s
  followed by unphysical growth

• Evolution of density fluctuations leading to saturated amplitudes and spectra

•  With Te fluctuations

global mode

global mode

global mode

global mode
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Ion density and electron Te fluctuations in the midplane
saturate at ~1.5x10-4 sec

•  With Te fluctuations

BOUT
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Time-averaged ion density fluctuations in the midplane
saturate at ~15% relative amplitude and peak near Rsep

BOUT

•  With Te fluctuations

BOUT
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Time-averaged Te fluctuations in the midplane
saturate at ~40-60% relative amplitude and peak near Rsep

•  With Te fluctuations

BOUT



15B. Cohen, et al., Int’l Sherwood 2012

Time-averaged ion particle diffusion coefficient in
the midplane saturates at O(1) m2/s and peaks near Rsep

•  With Te fluctuations

BOUT



16B. Cohen, et al., Int’l Sherwood 2012

Time-averaged electron thermal diffusion coefficient in
the midplane saturates at 1-5 m2/s and peaks near Rsep

•  Bout with Te fluctuations

! 

Note :  Here heat flux (conductive) =  N0 < "˜ v r"Te >tor,t ,  and  #e = $N0 < "˜ v r"Te >tor,t /N0%Te0
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Case #3: Include Advection of Te in  BOUT06 Equations for Drift
Resistive Ballooning with Parallel Electron Thermal Conduction

• Consider the following simplified equation set in the BOUT06 framework:
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• Electromagnetic with
• Actual DIII-D geometry
• DIII-D - like fixed background profiles for shot

#119919
• Includes Te fluctuations & parallel heat conduction
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BOUT-06 produces saturated turbulence for DIII-D geometry
with Te fluctuations and electron parallel thermal conduction

• Saturation at ~1.5x10-4s

• Evolution of density fluctuations leading to saturated amplitudes and spectra

BOUT

•  With Te fluctuations and electron parallel thermal conduction
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History of rms fluctuation amplitudes in midplane at separatrix
with electron parallel thermal conduction

•  With Te fluctuations and electron parallel thermal conduction

BOUT
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Time-averaged ion density fluctuations in the midplane
saturate at ~11% and peak near Rsep

•  With Te fluctuations and electron parallel thermal conduction

BOUT
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Time-averaged Te fluctuations in the midplane
peak near the Rsep and saturate at ~18% relative amplitude

•  With Te fluctuations and electron parallel thermal conduction

BOUT
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Time-averaged ion particle diffusion coefficient in the midplane
saturates at < 0.2 m2/s and peaks near Rsep

•  With Te fluctuations and electron parallel thermal conduction

BOUT



23B. Cohen, et al., Int’l Sherwood 2012

Time-averaged electron thermal diffusion coefficient
in the midplane saturates at ~0.1 m2/s and peaks near Rsep

BOUT

•  With Te fluctuations and electron parallel thermal conduction
! 

Note :  Here heat flux (conductive) =  N0 < "˜ v r"Te >tor,t ,  and  #e = $N0 < "˜ v r"Te >tor,t /N0%Te0
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Case #4: Include Advection of Temperature Te in  BOUT06
Equations for Drift Resistive Ballooning with Magnetic Flutter

• Consider the following simplified equation set in the BOUT06 framework:
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• Electromagnetic with  in the vorticity eqn.
• Actual DIII-D geometry
• DIII-D - like fixed background profiles
      for shot 119919
• Includes Te fluctuations and parallel heat conduction
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BOUT-06 produces saturated turbulence for DIII-D geometry
 with δTe, parallel thermal conduction, and magnetic flutter

• Evolution of density fluctuations leading to saturated amplitudes and spectra

BOUT

• Saturation at ~1.5x10-4s

•  With Te fluctuations, electron
parallel thermal conduction, and

! 
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History of rms fluctuation amplitudes in midplane at separatrix
with electron parallel thermal conduction and magnetic flutter

BOUT

•  With Te fluctuations, electron parallel thermal conduction, and
  in vorticity equation 
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Time-averaged ion density fluctuations in the midplane
saturate at ~10-15% and peak near Rsep

BOUT

•  With Te fluctuations, electron parallel thermal conduction, and 

! 
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Time-averaged Te fluctuations in the midplane
peak near the Rsep and saturate at ~25-40% relative amplitude

BOUT

•  With Te fluctuations, electron parallel thermal conduction, and 

! 
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Time-averaged ion particle diffusion coefficient
in the midplane saturates at < 0.3-0.4 m2/s

BOUT

•  With Te fluctuations, electron parallel thermal conduction, and 

! 
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Time-averaged electron thermal diffusion coefficient
in the midplane saturates at ~0.5 m2/s

BOUT

•  With Te fluctuations, electron parallel thermal conduction, and 

! 
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Note :  Here heat flux (conductive) =  N0 < "˜ v r"Te >tor,t ,  and  #e = $N0 < "˜ v r"Te >tor,t /N0%Te0
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Langmuir Probe Data for DIII-D #119919  (J. Boedo)

Electron density and radial particle flux vs. radius -- relative density
fluctuations exceed ~20%

Typical experimental rms density fluctuations at the separatrix are 24-50%
There is evidence that δn and the radial flux in the midplane peak near Rsep as in BOUT results.

Probe signals decrease
below noise levels for
R > 229 cm.
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Langmuir Probe Data for DIII-D #119919  (J. Boedo)

Electron temperature fluctuations in midplane exceed 10%

Typical experimental rms δTe fluctuations at the separatrix are 10-25%
δTe and the probe fluxes in the midplane usually peak near the separatrix as in BOUT results.

Probe signals decrease
below noise levels for
R > 229 cm.
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Summary: As the physics model becomes more complete, the
agreement of BOUT results with DIII-D probe data improves

• BOUT algorithmic issues -- control of an odd-even numerical contamination
allows us to perform DIII-D simulations

• Comparison of suite of BOUT simulations to shot #119919:  peak values in
midplane at saturation near Rsep

‡Typical, flux-surface-averaged values for L-mode discharges in DIII-D inferred from UEDGE

~0.4 ‡1.2~0.15-0.2 ‡11.0102.0DIII-D
#119919
probe data

0.83.60.382.8110.9#4:  δTe≠0
κ||e≠0 &

0.20.720.171.05.80.58#3:  δTe≠0
κ||e≠0

7.2540.774.3431.0#2:  δTe≠0
 κ||e=0

N/AN/A0.41.8N/A0.95#1:  δTe=0

χe(m2/s), local
(conductive)

Radial Heat Flux

(103 J/m2 s)

Dr (m2/s)
    local

Radial
Particle Flux
(1020 /m2 s)

<δTe>rms

         (eV)
<δNi>rms

  (1018 m-3)
Bout
simulation
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BES Measurements: Long-Wavelength Density
Fluctuation Characteristics in 119921-- G. McKee, Z. Yan

• Short beam-blips injected to obtain BES
data during L-mode plasma conditions

BES 4x4 Grid
Density Fluctuation

Spectrum

n/n Amplitude Profile~

Spatial Correlation

(Preliminary Analysis)

222.5cm 225.5cm224.0cm

kθVEXB
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Synthetic Simulation Diagnostics Using GKV Suite to
Match BES Data in Shot #119921

Density Fluctuation Spectrum in BOUT

• We construct synthetic diagnostics using GKV suite
of IDL routines to compare to BES data. Spatial
filtering (1D or 2D) corresponds to 1 cm limit on
spatial resolution in the BES grid in R and Z.

• <Er>=0 in simulations, but <Er> is finite in #119921
leading to Doppler shift in frequency kzVExB  with
VExB=3.9x105cm/s

Spatial Correlation in BOUT

n/n Amplitude Profile in BOUT~
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Comparison of Synthetic Simulation Diagnostics Using
GKV Suite to BES Data in Shot #119921

Density Fluctuation SpectrumSpatial Correlationn/n Amplitude Profile~

kθVEXB

222.5cm 225.5c
m

224.0c
m

BOUT

BES
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Summary: Points of Agreement in Comparison of
BOUT Results with BES Data as Physics Model Improves

• Comparison of suite of BOUT simulations to shot #119921 BES data: fluctuation frequency
spectra, peak density amplitude radial half-width, correlation lengths

• Factor of 2 or better agreement seen between simulation synthetic diagnostics with filtering
and the DIII-D #119921 BES data

1.3 ±0.23.8-kzVExB=

   -0.1 ±0.4
(Doppler shifted)

2 ±0.22 ±0.20.09 ±0.2DIII-D
#119921
BES data

3.5 / 30 / 00.8 / 21.4 / 2.10.23 / 0.11#4:  δTe≠0
κ||e≠0 &

1.5 / 10 / 00.4 / 1.41.7 / 1.90.17 / 0.08#3:  δTe≠0
κ||e≠0

1.5 / 10 / 00.5 / 1.21.1 / 1.20.25 / 0.12#2:  δTe≠0
 κ||e=0

4 / 23 / 0.50.6 / 0.91.2 / 1.50.13 / 0.07#1:  δTe=0

Freq half-max
in density
fluct’t’n spect,

raw/filtered
(105 rad/s)

Peak freq
in density
fluct’t’n spect,

raw/filtered
(105 rad/s)

ΔZcorr,half-max
of density

(cm)
raw/filtered

ΔRhalf-max
of <δNi/Ni>rms

(cm)
raw/filtered

<δNi/Ni>rms

 peak vs. R
raw/filtered

Bout
simulation
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